Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises

نویسندگان

  • Fuwen Yang
  • Zidong Wang
  • Yeung Sam Hung
چکیده

In this note, a robust finite-horizon Kalman filter is designed for discrete time-varying uncertain systems with both additive and multiplicative noises. The system under consideration is subject to both deterministic and stochastic uncertainties. Sufficient conditions for the filter to guarantee an optimized upper bound on the state estimation error variance for admissible uncertainties are established in terms of two discrete Riccati difference equations. A numerical example is given to show the applicability of the presented method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises

In this note, a robust finite-horizon Kalman filter is designed for discrete time-varying uncertain systems with both additive and multiplicative noises. The system under consideration is subject to both deterministic and stochastic uncertainties. Sufficient conditions for the filter to guarantee an optimized upper bound on the state estimation error variance for admissible uncertainties are es...

متن کامل

Robust finite horizon minimax filtering for discrete-time stochastic uncertain systems

We study a !nite-horizon robust minimax !ltering problem for time-varying discrete-time stochastic uncertain systems. The uncertainty in the system is characterized by a set of probability measures under which the stochastic noises, driving the system, are de!ned. The optimal minimax !lter has been found by applying techniques of risk-sensitive LQG control. The structure and properties of resul...

متن کامل

Kalman Filtering for Linear Time-Delayed Continuous-Time Systems with Stochastic Multiplicative Noises 355 Kalman Filtering for Linear Time-Delayed Continuous-Time Systems with Stochastic Multiplicative Noises

Abstract: The paper deals with the Kalman stochastic filtering problem for linear continuoustime systems with both instantaneous and time-delayed measurements. Different from the standard linear system, the system state is corrupted by multiplicative white noise, and the instantaneous measurement and the delayed measurement are also corrupted by multiplicative white noise. A new approach to the...

متن کامل

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

Applications of Random Parameter Matrices Kalman Filtering in Uncertain Observation and Multi-Model Systems

This paper considers the Linear Minimum Variance recursive state estimation for the linear discrete time dynamic system with random state transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It is shown that such system can be converted to a linear dynamic system with deterministic parameter matrices but state-dependent process and measurement noises. It is pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2002